Office of Vehicle Technologies

Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

Wednesday, June 17, 2014

Tien Q. Duong

BATT Program Manager
Energy Storage R&D
Hybrid and Electric Systems Subprogram
Department of Energy

Project ID: ES 108

Perform cutting-edge research on new materials and address fundamental chemical and mechanical instability issues.

Challenges

- Conduct research and development on the next-generation of battery anodes, cathodes, and electrolytes.
- Understand failure mechanisms to enable higher energy, longer lasting, and less expensive batteries.
- Conduct comprehensive modeling of cell and material behavior.

Participants

STANFORD UNIVERSITY

BATT Structure

Current program consists of six tasks and two focus groups.

TASKS

- Electrode Architecture
- Anodes
- Cathodes
- Electrolytes
- Modeling
- Diagnostics

FOCUS Groups

- Silicon Anode Working Group
- High Voltage Working Group

Electrode Architecture (1)

The main goals of this task are:

- to benchmark state of the art materials: silicon anodes and high-voltage cathodes
- to provide high-quality electrodes to the BATT Program community
- to develop highly controlled electrode architectures to enable:
 - very high energy density electrodes using very low tortuosity electrode design
 - silicon anodes with a high capacity and long life

Anodes (2)

- Goal: move beyond graphite to develop high-energy anodes
- Focus: silicon materials
- Various strategies investigated to mitigate mechanical degradation and surface instability during charge/discharge cycles:
 - depositing Si on copper porous current collector
 - hollow silicon nanotubes, hollow spheres, yolk-shell structures
 - use of metal/Si alloys
 - mesoporous Si-sponges
 - Si/SiO_x graphene micro- and nanocomposites
 - atomic layer deposition coatings to improve electrode cohesion
- Exploration of exfoliated MAX phases

Anodes - Status

Current emphasis: Generation of high-capacity Si nanocomposites, focused at controlling volume expansion/contraction as well as lithium and solvent consumption due to continued SEI formation with cycling.

Challenges

- High 1st cycle irreversible loss
 - Li loss with SEI formation
- Low loading/areal capacity
 - High reactivity of nano Si
- High capacity fade
 - Volume expansion/contraction
- Low coulombic efficiency
 - SFI formation
- Poor rate capability
 - Inadequate Li diffusion

Approaches

- Novel architectures: Nanotubes, Nanowires, core-shell structures, composites
- <u>Functional coatings</u>: Metals, Li⁺ and e- conducting ceramics, carbon based systems
- Binders: High strength and elastomeric polymers

1st cycle irreversible loss **Bulk Si** Si Nanoparticle **Anode Anode** (Poor areal capacity) Capacity (mAh/cm²) Specific Capacity (mAhg⁻¹) Coulombic Efficiency (% Coloumbic Efficiency 0.5 Cycle Number Cycle Number Novel (mAh/cm²) Soulombic Efficiency (%) 3.5 architectures: 3.0 **Hollow Silicon Nanotubes** Silicon 2.5 **Nanotubes** Areal Capacity Si Nanotube: HRTEM

Si Nanotubes prepared by scalable approach show a high areal capacity Electrolyteiadomeses ation, does not contain any proprietary and door capacity retention

Vehicle Technologies Office

Electrolytes (3)

- Electrolyte projects have a two-year duration
- Goals are to develop new electrolytes enabling new electrode materials generations:
 - high-voltage operations (4.6V)
 - compatible with silicon anodes

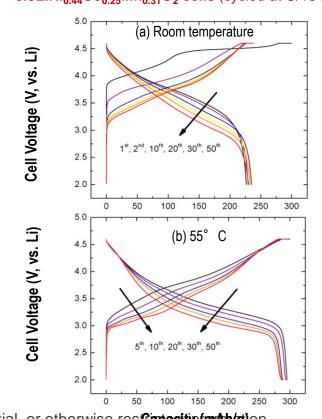
Cathodes (4)

- Critical need to develop high-energy cathode materials but no clear winner on the horizon
- Several approaches pursued:
 - Li₂MnO₃ stabilized composites
 - metal-doped NMC
 - polyanion materials having the capability to exchange more than one lithium ion
 - polyanion glassy materials
 - synthesis of metastable phases
 - aqueous catholytes (require conductive electrolyte separator)

Cathodes - Status

Concentrated effort to search for high-capacity cathode materials – focused at solving voltage fade issue of Li-rich, "layered-layered" cathode material.

Challenges


- Energy density of Li-ion cells
 - Limited by the cathode performance materials changed little over 20 years
- Few alternative "next gen" cathodes
 - Current cathodes are limited to 4.3V— electrolyte oxidation at high voltages
- Excess Li material issues
 - Exhibit promise, however face problems, including voltage fade, high impedance, and low tap density

Approach

- New Materials: Understand reactivity at voltages above 4.3V and design new materials
 - Electrolytes to operate at high voltages
 - Additives to form artificial coatings on cathodes
 - Inorganic coatings to "protect" the cathode
- Fundamental Knowledge: Understand phase transformation in excess Li cathodes

 _ This presentation does not contain any proprietary, confidential, or otherwise restantial transformation.

Voltage profiles of Li/0.5Li₂MnO₃• 0.5LiNi_{0.44}Co_{0.25}Mn_{0.31}O₂ cells (cycled at C/15 rate)

Diagnostics (5)

- The Diagnostics Task is essential to investigating performance-limiting and life-limiting processes in batteries
- Focus is to support effort on new electrode materials: silicon anodes and high-energy cathode materials
- One project on Li/S batteries: understanding the composition of polysulfide species generated during charge and discharge

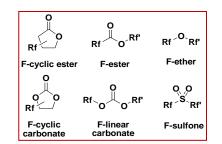
Modeling (6)

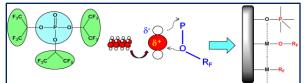
- Sophisticated mathematical modeling supports Tasks 1-5
- Brings physical understanding to complex interactions through development of comprehensive phenomenological models
- Current projects address:
 - atomistic degradation mechanisms for Li-excess materials
 - first principal calculations to understand capacity limitations
 - ab initio modeling of SEI formation and evolution on silicon anodes
 - calculation of stress/strain response of SEI and implications for mechanical degradation
 - measuring and predicting electronic and ionic conductivities of electrodes
 - mathematical modeling of Li/S batteries

Fluorinated Electrolyte for 5-V Li-Ion Chemistry

PI/Co-PI: Z. Zhang (ANL) / K. Xu (US ARL) / X. Yang (BNL)

Technical Approach:


- Design and synthesize new electrolyte solvents with intrinsic oxidation stability and good ionic conductivity.
- Explore cathode passivation additives to further mitigate the surface reactivity on 5-V LiNi_{0.5}Mn_{1.5}O₄ spinel.
- Conduct in situ surface characterization (XAS, AFM, and XPS) to assist the rational design of electrolytes and additives.


Status:

 Demonstrated the 1st generation fluorinated electrolyte with improved voltage stability.

Technology:

High voltage electrolytes based on fluorinated solvents and fluorinated additives for 5-V LiNi_{0.5}Mn_{1.5}O₄ and graphite cell. The intrinsic oxidation stability of the is offered by lowering the HOMO energy level with strong electronwithdrawing fluorine and fluorinated alkyl groups attached to

Objectives:

- Develop a new electrolyte system with outstanding stability at high voltage and high T with improved safety characteristic.
 - Solvents with intrinsic stability (>5.0V vs Li+/Li)
 - Additives to compact & robust SEI
- Understand electrode/electrolyte interaction mechanism in:
 - LNMO/Graphite cell.
 - In situ XAS, AFM and XPS

Deliverables:

>95% capacity retention in 500 cycles for LNMO/graphite cells with improved safety characteristic; Fabricate twelve pouch cells (10mAh) with the optimal fluorinated electrolyte (solvents + additive) for DOE validation. (2 Years project, start: 10/1/13)

Funding: \$1.0M (DOE)

Milestones:

- Q1: Theoretical calculation of electrolyte solvents (fluorinated carbonate, fluorinated ether) and additives (fluorinated phosphate, fluorinated phosphazene); Validate electrochemical properties of available fluorinated solvents
- **Q2:** Synthesize/characterize Gen-1 electrolyte (3 linear/cylcic F-carbonate solvents + 1 additive) by NMR,FT-IR,GC-MS,DSC
- Q3: Evaluate LNMO/graphite cell performance of Gen-1 electrolyte [Solvent(s) + Additive(s)]
- Q4: Optimize Gen-1 high voltage F-electrolyte; Deliver 10 baseline pouch cells

This presentation does not contain any proprietary, confidential, or otherwise restricted information

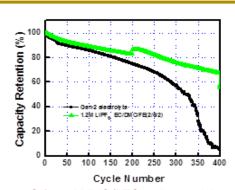
the solvent structure.

Daikin America High-Voltage Electrolyte

PI/Co-PI: Joe Sunstrom / Hitomi Miyawaki (Daikin)

Technical Approach:

 Using a stable, established cell chemistry (4.6 V LMNO/graphite), we will conduct 4 PDCA cycles to develop a high-voltage electrolyte.


 2 PDCA cycles to identify optimum base solvent and salt formulation utilizing basic property measurements

- 1 PDCA cycle to identify best available fluorinated anode/cathode additives which form stable SEI layers at high cell voltage
- 1 PDCA cycle to identify and optimize out gassing/acid scavenger additives
- Each PDCA cycle includes basic property measurements (conductivity, viscosity, electrochemical measurements and brief cycle testing in full cell test batteries

Status: First PDCA cycle underway

Technology:

Taking advantage of the inherent stability of fluorochemicals as compared to their hydrocarbon analogs, we are developing a n electrolyte with high voltage stability.

DEMING

Cycle life performance at 55°C for a LMNO/LTO cell containing conventional Generation 2 (black) and fluorinated FE (green) electrolyte.

Objectives:

Exploratory Development

Identify promising electrolyte compositions for high-voltage (4.6 v) electrolytes via the initial experimental screening and testing of selected compositions

Advanced Development

 Detailed studies and testing of the selected high-voltage electrolyte formulations and the fabrication of final demonstration cells

Deliverables: Development of a stable (300 – 1000 cycles), high-voltage (at 4.6 volts), and safe (self-extinguishing) formulated electrolyte.

Funding:

Duration: 2 yrs, Start: 10/1/13, Total: \$1.29M, DOE: \$912K
 Daikin America: \$379K

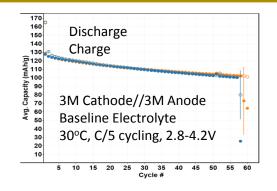
Milestones (Due end of Budget Period 1: January 31, 2015)

- Complete high-voltage (4.6 V) electrolyte experimental design with consistent data sufficient to build models and identify promising electrolyte formulations
- Fabrication of 10 interim cells and delivery of cells to DOE
- Electrochemical and battery cycle tests are completed and results are obtained which demonstrate stable performance at 4.6 volts

Novel Non-Carbonate Based Electrolytes for Silicon Anodes

PI: Dee Strand (Wildcat Discovery Technologies)

Technical Approach:


- Stage 1: Develop additive package to form stable SEI's on silicon anode
- Stage 2: Identify of non-carbonate solvents that are stable on additive-based SEI
- Stage 3: Optimize formulation to achieve voltage, conductivity targets

Status:

- Method validation complete to ensure 3M silicon anode results are replicated in Wildcat cells
- Mapping of additive performance on silicon vs. graphite in progress
- Solvent screening in progress to determine baseline solvent for additive testing

Technology:

Baseline data for 3M silicon alloy anode established for Wildcat cell architecture

Objectives:

- Development of non-carbonate electrolyte formulations that:
 - Form stable SEIs on 3M silicon alloy anode, enabling coulombic efficiency > 99.9% and cycle life > 500 cycles (80% capacity) with NMC cathodes
 - Have comparable ionic conductivity to carbonate formulations
 - Are oxidatively stable to 4.6V
 - Do not increase cell costs

Deliverables: Delivery of 10 interim and 10 improved 18650 cells and test protocols to specified DOE lab for testing

Funding:

 Duration: 2 yrs, Start: 10/1/13, Total: \$1.25M, DOE: \$999.8K, Industry: \$249.9K

Milestones:

- Q1: Assemble materials, establish baseline performance with 3M materials.
- Q2: Develop initial additive package using non-SEI forming solvent.
- Q3: Screen initial solvents with initial additive package.
- Q4: Design/build interim cells for DOE.

FY 2014 BATT Funding Opportunity Announcement

- Solicit new proposals for beyond lithium ion technologies
- Primary Focus on:
 - Li metal protection
 - Solid electrolytes
 - Sulfur Cathode
 - Oxygen Cathode
 - Other non lithium chemistry
- Award selection will be announced in August